Go back     Home Modalities Electron energy loss spectroscopy

Electron energy loss spectroscopy (EELS)

CC BY-SA 3.0 From Wikipedia on:

Electron energy loss spectroscopy


Electron energy loss spectroscopy (EELS) is a form of electron microscopy in which a material is exposed to a beam of electrons with a known, narrow range of kinetic energies. Some of the electrons will undergo inelastic scattering, which means that they lose energy and have their paths slightly and randomly deflected. The amount of energy loss can be measured via an electron spectrometer and interpreted in terms of what caused the energy loss. Inelastic interactions include phonon excitations, inter- and intra-band transitions, plasmon excitations, inner shell ionizations, and Cherenkov radiation. The inner-shell ionizations are particularly useful for detecting the elemental components of a material. For example, one might find that a larger-than-expected number of electrons comes through the material with 285 eV less energy than they had when they entered the material. This is approximately the amount of energy needed to remove an inner-shell electron from a carbon atom, which can be taken as evidence that there is a significant amount of carbon present in the sample. With some care, and looking at a wide range of energy losses, one can determine the types of atoms, and the numbers of atoms of each type, being struck by the beam. The scattering angle (that is, the amount that the electron's path is deflected) can also be measured, giving information about the dispersion relation of whatever material excitation caused the inelastic scattering.

Read more about 'Electron energy loss spectroscopy' at: Wikipedia

Wikipedia contributors. "Electron energy loss spectroscopy." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, Oct. 8, 2024.


Helmholtz Imaging spinning wheel

Please wait, your data is processed