CellDetection

Authors: Eric Upschulte

Keywords: Image processing, Information, Data analysis, Modeling, Supercomputing, Open source, Deep learning, Cell segmentation, Cell detection, Instance segmentation, Cell counting, Pytorch

Cell Detection

Downloads Test PyPI Documentation Status DOI

⭐ Showcase

NeurIPS 22 Cell Segmentation Competition

neurips22
https://openreview.net/forum?id=YtgRjBw-7GJ

Nuclei of U2OS cells in a chemical screen

bbbc039
https://bbbc.broadinstitute.org/BBBC039 (CC0)

P. vivax (malaria) infected human blood

bbbc041
https://bbbc.broadinstitute.org/BBBC041 (CC BY-NC-SA 3.0)

🛠 Install

Make sure you have PyTorch installed.

PyPI

pip install -U celldetection

GitHub

pip install git+https://github.com/FZJ-INM1-BDA/celldetection.git

💾 Trained models

model = cd.fetch_model(model_name, check_hash=True)
model name training data link
ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c BBBC039, BBBC038, Omnipose, Cellpose, Sartorius - Cell Instance Segmentation, Livecell, NeurIPS 22 CellSeg Challenge 🔗

🐳 Docker

Find us on Docker Hub: https://hub.docker.com/r/ericup/celldetection

You can pull the latest version of celldetection via:

doker pull ericup/celldetection:latest

Apptainer

You can also pull our Docker images for the use with Apptainer (formerly Singularity) with this command:

apptainer pull --dir . --disable-cache docker://ericup/celldetection:latest

🤗 Hugging Face Spaces

Find us on Hugging Face and upload your own images for segmentation: https://huggingface.co/spaces/ericup/celldetection

🧑‍💻 Napari Plugin

Find our Napari Plugin here: https://github.com/FZJ-INM1-BDA/celldetection-napari

Find out more about Napari here: https://napari.org
bbbc039
You can install it via pip:

pip install git+https://github.com/FZJ-INM1-BDA/celldetection-napari.git

🏆 Awards

📝 Citing

If you find this work useful, please consider giving a star ⭐️ and citation:

@article{UPSCHULTE2022102371,
    title = {Contour proposal networks for biomedical instance segmentation},
    journal = {Medical Image Analysis},
    volume = {77},
    pages = {102371},
    year = {2022},
    issn = {1361-8415},
    doi = {https://doi.org/10.1016/j.media.2022.102371},
    url = {https://www.sciencedirect.com/science/article/pii/S136184152200024X},
    author = {Eric Upschulte and Stefan Harmeling and Katrin Amunts and Timo Dickscheid},
    keywords = {Cell detection, Cell segmentation, Object detection, CPN},
}

🔗 Links


Publications

The multimodality cell segmentation challenge: toward universal solutions

Ma J, Xie R, Ayyadhury S, Ge C, Gupta A, Gupta R, Gu S, Zhang Y, Lee G, Kim J, Lou W, Li H, Upschulte E, Dickscheid T, de Almeida J, Wang Y, Han L, Yang X, Labagnara M, Gligorovski V, Scheder M, Rahi S, Kempster C, Pollitt A, Espinosa L, Mignot T, Middeke J, Eckardt J, Li W, Li Z, Cai X, Bai B, Greenwald N, Van Valen D, Weisbart E, Cimini B, Cheung T, Brück O, Bader G, Wang B - Nature Methods - 2024


CellDetection

Upschulte E, Harmeling S, Amunts K, Dickscheid T - Zenodo - 2023


Contour proposal networks for biomedical instance segmentation

Upschulte E, Harmeling S, Amunts K, Dickscheid T - Medical Image Analysis - 2022


Helmholtz RSD
This entry is synchronized with the Helmholtz Research Software Directory (RSD).
If you're the author or maintainer, please edit on the Helmholtz RSD platform.
Click here to view CellDetection on RSD.
Helmholtz RSD icon
CellDetection Image
License
Apache-2.0

Helmholtz Imaging spinning wheel

Please wait, your data is processed