DR. Abdul Qadir Ibrahim

Researcher focused on neural operator theory, spectral methods, and sparsity-driven representations. My current work centers on adaptive operator learning over mixed Sobolev–Besov spaces, leveraging spectral basis dictionaries and gating mechanisms to construct efficient neural approximations. I explore the intersection of functional analysis and deep learning, targeting compact, data-driven approximations of nonlinear maps via sparse convex combinations of domain-specific bases.


Publications

Space-Time Parallel Scaling of Parareal with a Physics-Informed Fourier Neural Operator Coarse Propagator Applied to the Black-Scholes Equation

Ibrahim A, Götschel S, Ruprecht D - Proceedings of the Platform for Advanced Scientific Computing Conference - 2025


Parareal with a Physics-Informed Neural Network as Coarse Propagator

Ibrahim A, Götschel S, Ruprecht D - Lecture Notes in Computer Science - 2023


Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin

Wakhloo D, Scharkowski F, Curto Y, Javed Butt U, Bansal V, Steixner-Kumar A, Wüstefeld L, Rajput A, Arinrad S, Zillmann M, Seelbach A, Hassouna I, Schneider K, Qadir Ibrahim A, Werner H, Martens H, Miskowiak K, Wojcik S, Bonn S, Nacher J, Nave K, Ehrenreich H - Nature Communications - 2020



Send mail to Abdul Qadir Ibrahim (abdul.qadir.ibrahim@desy.de)

Helmholtz Imaging spinning wheel

Please wait, your data is processed